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Abstract

This paper addresses the development of inverse compensation techniques for a class of
ferromagnetic transducers including magnetostrictive actuators. If unaccommodated, the hys-
teresis and nonlinear dynamics can produce severe loss of control authority and potential
instabilities when the actuators are incorporated in control design. In this work, hysteresis
is modeled through the domain wall theory originally proposed by Jiles and Atherton. This
model is based on the quantification of the energy required to translate domain walls pinned
at inclusions in the material with the magnetization at a given field level specified through
the solution of an ordinary differential equation. A complementary differential equation is
then employed to compute the inverse which can be used to compensate for hysteresis and
nonlinear dynamics in control design. The performance of the inverse compensator and its
employment in LQR control design are illustrated through numerical examples.
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1 Introduction

Increased demands on control transducers in combination with novel material designs have
led to the development of a class of ferromagnetic transducers, including those based on mag-
netostrictive materials, which deliver high level strains and forces but often exhibit significant
hysteresis and nonlinear dynamics. While magnetostrictive transducers can be utilized in lin-
ear regimes by maintaining low input levels, control requirements often dictate that they be
driven at the high drive levels where hysteresis and nonlinearities are inherent to the actua-
tor dynamics. Furthermore, the advantages of these transducers over traditional actuators is
typically realized at high drive levels. Hence it is necessary to design control methods which
accommodate the observed actuator hysteresis and nonlinearities.

While numerous mechanisms can produce hysteresis and nonlinearities in magnetostrictive
actuators, a primary source is attributed to ferromagnetic domain mechanisms. This produces
sigmoid hysteresis curves of the type illustrated in Figure 1 for the magnetostrictive material
Terfenol-D and is the form of hysteresis that we consider here.

To illustrate the issues pertinent to control design using high performance actuators, we
consider a plant with nonlinear input u provided by the actuator as indicated in Figure 2. The
input to the actuator is denoted by v while the dynamics of the actuator are represented by
N(-). We note that the map N(-) is typically both nonlinear and a multivalued function of the
input level due to the hysteresis. It is, however, a well-defined function of v. Finally, we let u,
denote the input specified to obtain the control objective in the absence of the nonlinearities
and hysteresis N ().

For systems exhibiting even mild hysteresis, linear control methods are typically ineffective
due to incurred phase shifts and unmodeled energy loss in the hysteresis loop. To address this,
we consider the construction of exact and approximate inverses for the actuator nonlinearities
and hysteresis. This entails the computation of a map N~'(-) or approximate map N~'(-)
such that u, = N~'(v) ~ N~(v). For linear control implementation, u, is filtered by N~1(-)
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Figure 1. Relationship between the magnetic field H and magnetization M for Terfenol-D
(Experimental data collected at Iowa State University).
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Figure 2. (a) Plant with input actuator hysteresis N(-); (b) Inverse compensator N~!(-) for
the hysteresis.

before input to the filter. In this manner, one compensates for the nonlinearity and the final
signal u = N(N~*(up)) is that prescribed by the control law. This process is illustrated in
Figure 2.

We emphasize that the process of inverse compensation for nonlinearities is well known
and the reader is referred to [1] for a comprehensive discussion in the context of general actu-
ator nonlinearities and hysteresis. The models employed in [1] to characterize the hysteresis
N(-) and inverse N7'(-) are based on piecewise linear Preisach approximations and hence
are phenomenological in nature. The contribution of this paper lies in the construction of
a hysteresis model and inverse for magnetostrictive actuators which is based upon energy
principles. This yields a compensation filter which is easily constructed and can be readily
updated to accommodate changing operating conditions.

The model for the actuator hysteresis process N(-) is based upon the theory of Jiles and
Atherton [2, 3]. This theory is based upon the tenant that ferromagnetic hysteresis is primarily
due to the energy required to bend and translate domain walls pinned at inclusions in the
material. By formulating the energy of domain wall characteristics in terms of bulk material
properties, Jiles and Atherton obtained a model which requires only five parameters. The
construction of the model is further enhanced by the physical nature of the parameters and
the fact that certain parameters can be directly specified from measured data. This model
has subsequently been extended to magnetostrictive transducers [4, 5] and it is in this setting
that we consider the development of an inverse N~'(-). We note that while the model and
inverse compensator are illustrated in the context of LQR feedback control, the techniques
are equally applicable when designing feedforward or adaptive control systems. Again, the
reader is referred to [1] for a comprehensive discussion of adaptive control design for systems
exhibiting input hysteresis once an exact or approximate inverse has been determined.

Section 2 provides a summary of the hysteresis model and the inverse model is developed
in Section 3. The use of the inverse compensation scheme for optimal control design in a
structural system is illustrated in Section 4. For that development, we consider magnetostric-
tive transducers employed as control actuators for attenuating vibrations in a thin beam. The
hysteretic actuator inputs N(-) are incorporated in a thin beam model and the dynamics are
approximated to obtain a finite dimensional control system. Finally, numerical examples are
provided to illustrate the performance of an LQR control with the inverse N~1(-) used to
compensate for the actuator hysteresis and nonlinearities.



2 Hysteresis Model

The model described here is based on the tenant that hysteresis in ferromagnetic materials
is due to the impeded movement of domain walls which are pinned at inclusions or defects
in the material. In such materials, changes in magnetization are attributed to the nucleation
and growth of domains through domain wall movement (note that domains denote regions
in which moments are highly aligned while domain walls are the transition regions between
domains). For materials which are free from inclusions, domain wall movement is unimpeded
and the magnetization is anhysteretic (hysteresis-free). This situation is idealized, however,
since defects are unavoidable (e.g., carbons in steel) and in many cases, incorporated in the
material to achieve the desired stoichiometry (e.g., Dysprosium in Terfenol-D). These defects
or inclusions provide pinning sites for domain walls due to the reduction in energy which occurs
when the domain intersects the pinning site. For low magnetic field variations about some
equilibrium value, the walls remain pinned and the magnetization is reversible. This motion
becomes irreversible at higher field levels due to wall intersections with remote pinning sites.
The model quantifies hysteresis through the characterization of the anhysteretic magnetization
M,,, the reversible magnetization M,., and the irreversible magnetization M;,,.

The anhysteretic magnetization at a point in the material is dependent on the effective
magnetic field, the saturation magnetization and the thermal energy of the sample. Under
the assumption of constant stress oy, the effective field can be expressed as

Heff = H+OAM

where H denotes the external field input to the transducer, M denotes the magnetization and
the parameter o quantifies the effects of interdomain coupling and magnetoelastic domain
interactions. Two commonly employed models for the anhysteretic are the Langevin expression

M,, = M, lcoth (#) - <HL”>] (1)

H,
M, = M,tanh (—f ! ) . 2)
a

and the Ising spin relation

Both models are derived using arguments from Boltzmann statistics with the differences de-
pendent upon the assumptions concerning possible domain orientations. Taylor expansions of
the hyperbolic cotangent and tangent functions reveals that the models agree through third
order terms with the Ising spin model producing steeper slopes % due to the magnitude of
the higher order terms. The constant a is given by a = /L/ fﬁ[sT, where kg is Boltzmann’s con-
stant, kgT represents the Boltzmann thermal energy, p is the free space permeability, and N
is the average domain density. The saturation magnetization M, can often be specified from
measured data or a priori knowledge about the material. The parameter a, on the other hand,
must be estimated through either a least squares fit to data or adaptive parameter estimation
techniques since N is unknown. Due to its dependence on the temperature T, this parameter
may vary during operation, in which case, adaptive estimation and control techniques may be
preferable.




Hysteresis losses are incorporated through the quantification of energy required to bend and
translate domain walls. As developed in [2], an irreversible component to the magnetization
M;,, can be computed through the consideration of energy dissipation due to pinning and
unpinning of domain walls at inclusions in the material. This yields the expression

dMirr _ Man - Mirr
dH k6 — o (My, — My,

(3)

for the differential susceptibility where k = %, and (p) is the average density of pinning
sites, (¢,) is the average energy for 180° walls, ¢ is a reversibility coefficient, and m is the
magnetic moment of a typical domain. Through its definition, & provides a measure for the
average energy required to break a pinning site. The parameter ¢ is defined to have the value
+1 when dH > 0 and —1 when dH < 0 to guarantee that pinning always opposes changes
in magnetization. In applications, § can be directly determined from the magnetic field data
while k is identified for the specific transducer and operating conditions.

We note that in certain regimes near saturation, the expression (3) can produce nonphys-
ical results. Specifically, when dH is reversed near saturation, the expression (3) can produce
negative values of the differential susceptibility which are not observed in experiments. Fol-
lowing the strategy detailed in [3], we consider the initial changes in magnetization to be due
to the reversible relaxation of bulged domain walls when dH is reversed and enforce % =
This produces the more physically realistic expression

dMirr o g Man - Mz'rr

_ 4
dH "k — a (Mg — Myy) )

where

~ {1, {dH >0 and M > M,,} or {dH <0 and M < M,,}

0, otherwise.

The reversible magnetization quantifies the degree to which domain walls bulge before
attaining the energy necessary to break the pinning sites. As derived in [2], to first approxi-
mation, the reversible magnetization is given by

Mrev = C(Man - Mirr) . (5)

The reversibility coefficient ¢ can be estimated from the ratio of the initial and anhysteretic
differential susceptibilities [3] or through a least squares fit to data.
The total magnetization is then given by

M = Mrev + Mirr (6)

with M;., and M,., defined by (4) and (5) and the anhysteretic magnetization given by
(1) or (2). To provide a relation which facilitates inversion, it is advantageous to express
the output magnetization as a function of the input field. When the Ising spin model is
used to characterize the anhysteretic magnetization, the expressions (2), (4) and (5) can be



consolidated to yield

ﬂ . (1 _ )dM'irr + dMan
dH aH T dH
N Man - Mirr dMan
= 1 —
e e Y A A Rk
B 6(Mgy — M) N dM,,
T W= (M — M) dH

5 [ M,tanh (£ — ] LM (H + aM) (1 . aﬂ)
k6 — & [M,tanh (££2M) — M|~ a a dH

where @ = ;%-. The magnetization at a given field level is then specified by the solution to

the differential equation

dM
— = F(H, M)
dH (7)
M(H()) = MO
where
O 1 S[Mstanh (W) —M]
TR (Hredr) {ka — & [M,tanh (#£24) — M|

(8)

cM; o (H+aM
+——sech <7) .
a a

If one employs the Langevin expression (1) rather than the Ising spin relation (2) for the
anhysteretic, the function F is given by

1 0 [M,L (Zted) — pp
) - . e () o]

1+ el fosen? (aat) — (e o)’ Lko — & [Moc (#532) — ]

(9)

cM; L2 (H+aM) ( a )2
— csch” | —— | — ( /————
a a H+aoM
where the Langevin function is defined by

£(2) = coth(z) -

The relation (7) with F given by (8) or (9) is then employed when quantifying the actuator
hysteresis N(-). In both cases, the parameters § and $ can be computed directly from the
measured field data or the computed values of the magnetization and anhysteretic magnetiza-
tion. The saturation magnetization M; can often be determined directly from the measured
data or a priori knowledge of the material behavior. Hence only the parameters a, o, ¢ and
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k must be determined through a least squares fit to data or adaptive parameter estimation
techniques.
Finally, we note that the time-dependent dynamics of the magnetization can be specified

through the chain rule

dM dH
—— = F(H,M)=—.
dt (H, M)

This relation should be employed only for quasistatic processes, however, since this model
neglects the elastic properties of the material as well as time-dependent loss mechanisms.

3 Inverse Hysteresis Model

The hysteresis model in the form (7) is amenable to inversion through consideration of a

complementary differential equation. For actuators in which the anhysteretic is modeled by

the Ising spin model, the inverse is specified through solution of the differential equation
dM—1 . 1

dH f(M_l,H) (10)

M~ (Hp) = My"

with F defined by (8). Similarly, employment of (9) provides the inverse when the Langevin
model is used to characterize the anhysteretic magnetization.
It can be readily verified that the inverse defined through (10) satisfies

for an input field H. In the control nomenclature of Section 1, the definition (10) can be
used to provide the exact inverse N~!(-) if the parameters M;, a, a, ¢ and k are known exactly.
For the examples in this paper, it is assumed that suitable parameters have been obtained
through a least squares fit to data and the exact inverse is employed. Similarly it provides an
approximate inverse N~!(-) which is suitable for adaptive parameter estimation and control
methods if the parameters are unknown or slowly change due to changing operating conditions.

Example 1.

In control applications, one typically employs the computed inverse as a filter to com-
pensate for the physical hysteresis and nonlinearities produced by the actuator. Hence one

considers the operation
u=N(N""(u,))

where u,, is the specified control in the absence of actuator hysteresis and nonlinearities. This
example illustrates the inversion process with the hysteresis specified by N = M.

The model (7) and inverse (10) were constructed with the parameters M, = 0.280 C'/m?,
a=42x10°C/m?* k = 3.7 x 10°C/m? a = 1.5 x 10%, ¢ = 0.65. A 1 Hz piecewise linear
signal u, having a maximum magnitude of 0.25 V/m was employed as input. Such quasistatic
signals are commonly employed in material characterization experiments. A first-order forward



difference method (Euler’s method) was used to numerically integrate the differential equations
(7) and (10). Due to the high sample rates in typical experiments, the method provides
sufficient accuracy, efficiency and stability for both numerical and real time experimental
implementation.

The input signal u, and output signal u = M (M '(u,)) are plotted in Figure 3 while the
inverse function v = M~'(u,) is plotted in Figure 4. A comparison of u, and M(M~*(uy,))
illustrates the qualitative accuracy of the inversion process while numerical computations
indicate that the absolute errors introduced in the process have magnitude less than 10~ 4.
While such accuracy obviously cannot be expected when the finite dimensional inverse N~ (-)
is employed in an infinite dimensional process N(-), the maintenance of these accuracy levels
under approximation does illustrate the stability of the method.

0.25 : : : : : : 0.25
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Time Time
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Figure 3. (a) Signal u,(t) input to the inverse compensator; (b) Signal u(t) = M (M~ (u,(t)))
applied to the plant.
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Figure 4. Inverse function M~ (u,).



4 Structural Application and Control Example

To illustrate the incorporation of the actuator hysteresis model in a structural model and
indicate the utility of the inverse compensator in linear control design, we consider a can-
tilevered thin beam with end-mounted magnetostrictive actuators as depicted in Figure 5.
Spatially uniform forces drive the beam while diametrically out-of-phase currents to the actu-
ators generate bending moments which attenuate transverse beam vibrations. This setup has
been employed in experiments designed to ascertain capabilities and properties of Terfenol-D
transducers [6] and it provides a prototype for illustrating the attributes of the inverse com-
pensator. For further details concerning the construction of the actuator, the reader is referred
to [6].

For this example, we will employ an LQR feedback control law. However, the inverse
compensator is equally effective for linear feedforward or adaptive control methods as dictated
by the application.

For modeling purposes, the beam is assumed to have length ¢, width b, and thickness h.
The density, Young’s modulus, Kelvin-Voigt damping coefficient and air damping coefficient
for the beam are denoted by py, Es, cp, and vy, respectively. The cross-sectional area of the
Terfenol rod is denoted by A,,,, while the Young’s modulus and damping coefficient for the
Terfenol rod are denoted by E¥ and cfl. The length and width of the connecting bar are
denoted by ¢, and b,, respectively, while the bar density is given by p,. Finally, the transverse
beam displacement is given by w while g(¢, z) denotes an exogenous surface force to the beam.

Moment and force balancing yields the strong form of the Euler-Bernoulli equations

0%w ow O? Mt 0?’M 0<z </t
—(t —(t "t x)=g(t — a9 (¢
p(m)atQ(,m)+76t(’x)+ axg (,.’L‘) g(,l’)+ amg (,3}') ) t>0
w(t,0) = 22(t,0) = 0 ()
ox £ 0
aMint ’ > ’
Mni(t, £) = e (t,£) =0

along with appropriate initial conditions, as a model for characterizing the transverse beam
dynamics. As detailed in [7], the composite density and internal bending moment are given
by

,0(33) = pbhb + 210Tb1‘£1‘x7‘0d(x)

0w Bw

— (7 I——(t

ggz (b @) Fenl g g (6 2)

where the characteristic function Y,.q delineates the location of the rods and
Eyh3b

El(z) = Ii o+ 2Amag BT (h/2 + )% Xroa(2)

CDbh,3b
12

cpl(z) = + 2Amagcg (h/2+ ET)Q Xrod(T) -

To specify the external moments M,,q,, it is necessary to quantify the strains generated
by an input field H to the actuator. While the strains depend upon a variety of material prop-
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Figure 5. Cantilever beam with magnetostrictive actuators. Uniform force inputs are de-
picted above the beam while the measurement point is indicated by the lower arrow.

erties including the crystalline anisotropy, to first approximation they can be specified by the

bulk magnetostriction
3s

AH) = 2 M)

(12)

where \; denotes the saturation magnetostriction and M is the magnetization given by (7).
The combination of (7) and (12) provides a relation between the input field H and positive
strains generated by the actuator. To obtain bi-directional strains, the weighted magnetization
2M (t)M; is used to bias to the center of the magnetic range. This yields the strains

3)s

= SapalM(0) +2M (1)

e(t)

along with the expression
Minag(t, ) = KM[M?(t) + 2M (t) My Xroa()

for the moment produced by diametrically out-of-phase Terfenol-D rods. Here the constant
KM is given by (3\s/M?)Apmag EX (h)2 + £,)°.

To obtain a weak form of the model, we take the state to be the displacement w in the
state space X = L?(0,¢) with the inner product

4
(6, 0)x = | powda.

The space of test functions is taken to be V = H?(0,¢) = {¢ € H?(0,£) | ¢(0) = ¢'(0) = 0}
with the inner product

¢
= [ EI¢""dx.
<¢7 w>V
0
A weak form of the model is then given by

/Of pd dx + /Oe Y dx + /OZ Minid" dz = /0Z Minagd” dx + /Oe godx (13)

for all ¢ € V. It is in this form that we develop the approximation method and formulate the
control problem.



To approximate the dynamics of (13) in a manner amenable to control formulation, we
employ a Galerkin discretization in the spatial variable to obtain a semidiscrete ODE system
in time. Specifically, the spatial basis is taken to be {qﬁj};-":“ﬁl where ¢;(z) denotes the j™
cubic B-spline modified to satisfy the fixed left boundary condition. Approximate solutions

m+1

w”(t,x) = ) w;(t)e;(w) (14)

=1

are then considered in the subpace V™ = span{¢;}. To obtain a vector ODE system, the
infinite dimensional system (13) is restricted to V™ and posed in first-order form to yield

y(t) = Ay(t) + B(u(t)) + G(t)

(15)
y(0) =o-
The component system matrices have the form
0 1
A= . -
Q'K Q'C
) 0
B(u(t)) = [M(u(t)) + 2M (u(t)) M oy (16)
0
G(t) - [ ~_1~ ]
Q™'g(t)
where y(t) = [wi(t), -+, Wmi1(t), W1(t), - Wm1(t)] and
~ £ ~
J— . — M "
Q= [ podyde  [Bl=kM [ oo
¢ ¢
o= "o a(t)]; = . 17
Ky = [ 16/} de [g0) = [ olt,)oids a7
¢
(€l = /0 enl gl ¢ dx .
Note that u(t) = H(t) denotes the control input to the system.
From (16), we note that the hysteresis input operator has the form
N(H(t)) = B(H(t)) = [M*(H(t)) + 2M (H (1)) M,] b
where b denotes the 2(m + 1) vector
0
b_[Q_lgl. (18)

The corresponding inverse is

N H®)=M" (—Ms +1/ M2+ H(t) ) b

10



where M~ denotes the solution to the differential equation (10).

The specific form of the optimal control is dependent on the nature of the exogenous force
g in (11) or (13) and resulting disturbance term G in (15). For the discussion which follows,
we consider exogenous forces which are periodic with fundamental period 7. Such forces arise
when modeling systems driven by oscillating or rotating components.

We now consider two techniques for formulating a linear optimal control problem. In the
first case, we simply linearize the operator B(H) about a given field level. This technique
is commonly employed when magnetostrictive transducers are employed at low drive levels
with magnetic biases and is applicable only when the transducer is operated in the nearly
linear range. The second technique is based upon the filtering of control inputs using the
inverse compensator. This control method is applicable throughout the operational range of
the transducer.

To specify the control input u(t) = H(t) in the first case, we will linearize about the
coercivity value u,. at which M (u.) = 0. In this case, the approximate linear operator B is

dM
=9M.—— 1
B s (ue)b (19)

2
dM-_ 5(1 —c) Man = Miry + M, [CSCh2 (—Heff) + (_a ) ]

where

du ké — a[Myn, — My, a a

for the anhysteretic model (1).
We then consider the minimization of

Jw) = [ [y 0w + " (1) Ru(t)] ar (20)
subject to
§(t) = Ay(t) + Bu(t) + G (1)
y(0) = y(7).

Here Q and R respectively denote the matrices used to weight the state and control input.

Under typical stabilizability and detectability assumptions (e.g., see [8]), the optimal control
for (20) is given by

(21)

u(t) = =R~ B [Iy(t) — r(t)] (22)

where II solves the algebraic Riccati equation ATl + ITA — TIBR™'BII + Q = 0. The per-
turbation variable r(t) € R2™+D is obtained through solution of the periodic perturbation

system
#(t) = —[A — BR™'B'TI"r(t) = IG(t)

r(0) = r(r). (23)

Note that in applications, (23) is typically integrated backward in time from 7 or forward in
time from —r.

As will be demonstrated in subsequent examples, the application of the control u(t) spec-
ified by (22) into the original system (15) is effective at low input levels but fails drastically
at high drive levels as a result of unincorporated time delays due to the hysteresis.

11



A control based on inverse compensation is obtained by employing the input operator
B=1b

where b is given by (18). This yields the resulting input w,. To obtain the optimal control for
the original system (15), the input wu, is filtered through the inverse to obtain

o(t) = M (Ms /M2 1 u(t) ) . (24)

We note that while this requires the online integration of (10) to obtain M !, the operation is
significantly less expensive than the online integration of (23) to obtain 7(t) or the integration
required to obtain state estimates y.(t) when full state information is unavailable.

Example 2.

To illustrate the performance and limitations of the two techniques, we consider a beam
of length ¢ = 4573 m, width b = .0203m and thickness h = .0016 m with the material
parameters for the beam and actuators summarized in Table 1. It should be noted that the
beam parameters are consistent with typical values for aluminum laboratory beams while
the Terfenol parameters are within the range obtained for model fits to an experimental
transducer [4]. For this choice of beam parameters, the first two natural frequencies for the
system occur at 6.1 Hz and 38.3 Hz. To account for the effects of parameter discontinuities
due the actuators and damping in the system, it was necessary to obtain these values through
a fast Fourier transform (FFT) of time domain data resulting from a simulated impact to the
beam (it is not possible to obtain analytic expressions through separation of variables). The
driving frequency in the numerical examples was chosen close to but not exactly concurrent
with these natural frequencies. For this example, the choice m = 12 was sufficient for resolving
the beam dynamics in the frequency range considered and the reported results were obtained
with m = 16.

A spatially uniform exogenous force

g(t,x) = go [sin(14nt) + sin(267¢)]

was applied throughout the time interval [0,2.5] to simulate a periodic pressure field on the
beam. The uncontrolled trajectories at the point Z = 3¢/5 for gy = 1 are plotted in Figures 6b
and 7a while the trajectories obtained with gy = 100 are plotted in Figures 6d and 7b. Both
cases exhibit a beat phenomenon due to the close proximity of the 7 Hz driving frequency
with the 6.1 Hz natural frequency of the beam.

We first consider the performance of the control based on the linearized operator B defined
in (19). The trajectories which result when the input u given by (22) is fed back into the
hysteretic system (15) at time ¢ = 0.45 are plotted in Figures 6b and 6d. The relationship
between the input magnetic field H = u and the resulting magnetization M for the two cases
are given in Figures 6a and 6¢c. The results for gy = 1 illustrate that the method is very effective
at low drive levels where the linear model is accurate. At the high drive levels at which the
actuators are advantageous, however, the input B(u) introduces significant hysteresis which

12



acts as a time delay to the system. The result is a loss in control authority which is sufficiently
severe to produce controlled beam trajectories which are larger in magnitude at certain times
than the uncontrolled trajectories.

The failure of the control based on the linearized system, when employed at high drive
levels, motivates the consideration of a control based on inverse compensation. In this case, the
operator B = b yields an input u, which is filtered by the inverse compensator (24) before input
to the system. As illustrated in Section 3, the resulting input u to the plant is then precisely
the control u, specified in the absence of hysteresis and nonlinear dynamics. The controlled
trajectories for go = 1 and gy = 100 are respectively plotted in Figures 7a and 7b. In this case,
there is no loss of control authority at high drive levels, thus illustrating that this approach
provides a significant advantage over the control design based on the linearized system. Finally,
a comparison with the examples in [9] illustrates that the performance of the controller based
on inverse compensation is comparable to that obtained when the functional (20) is minimized
subject to the original system (15) but at a fraction of the computational cost.
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Figure 6. Feedback of the linear law (22) into the nonlinear system (15). Relationship
between magnetic field H and magnetization M; (a) go = 1 and (c) go = 100. Uncontrolled
(——) and controlled (===) beam trajectories at T = 3¢/5; (b) go =1 and (d) go = 100.
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Figure 7. Uncontrolled beam trajectory (—) at the point £ = 3¢/5 and controlled trajectory
(===) obtained with the filtered input (24); (a) go = 1 and (b) go = 100.

Beam Actuator Terfenol
Ey, =7.0861 x 101° N/m? | E¥ =7.0x 101" N/m? | a = 7105 A/m
oy = 2863 kg/m? pr = 8524 kg/m? k=17002 A/m
cp, = 9.3663 x 10° Ns/m? | £, = .0254 m a =.007781
v =.013 Ns/m? b, = .002m c = 0.3931
Apag = -0064 m? M, = 1.3236 x 10° A/m
Ay = 9.96 x 1074

Table 1. Parameters for the beam and Terfenol transducer.

5 Concluding Remarks

This paper addresses the development of a modeling strategy and corresponding model-based
inverse compensator for a class of ferromagnetic transducers including magnetostrictive ac-
tuators. Control designs based on linearized system models are typically ineffective in such
regimes since they do not provide the capability for incorporating hysteresis and subsequent
time delays. The result is a severe loss in control authority and potential destabilization of
the system. To address this, we consider a model inverse which provides a transform so that
linear inputs produce linear outputs when applied to the actuator.

The models are based on the Jiles-Atherton theory which quantifies the energy required
to bend and translate domain walls pinned at inclusions in the materials. The construction
of the models can be summarized in the following four steps: (1) Determine the effective
field at a point in the material, (2) Quantify the anhysteretic magnetization through Boltz-
mann principles, (3) Quantify the irreversible magnetization due to domain wall translations
and (4) Characterize the reversible magnetization due to domain wall bending. The total
magnetization is then the sum of the irreversible and reversible components.

14



The consolidated model quantifying the magnetization in ferromagnetic materials is in the
form of an initial value problem which can be marched in time to characterize the hysteresis
loop. A complementary differential equation then provides the inverse transforms for the
actuators. The performance of this compensator and its employment in LQR control design are
illustrated through numerical examples. It is noted that while the determination of the inverse
requires the numerical approximation of a differential equation, the operation is significantly
less expensive than the online integration required to compute perturbation variables or update
state estimates. Hence the inverse compensator appears feasible for real-time experimental
implementation.

Finally, we point out that while not discussed here, similar models have been developed
to quantify hysteresis in certain ferroelectric materials [10]. Using techniques similar to those
described here, the use of these models provides the capability for compensating for hysteresis
observed in relaxor ferroelectric materials at low temperatures and piezoceramic actuators at
high drive levels. The comprehensive development of inverse compensators based on ferro-
electric domain wall theory is under investigation and will be reported in a future work.
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